Hot Deformation Behavior and a Two-Stage Constitutive Model of 20Mn5 Solid Steel Ingot during Hot Compression

نویسندگان

  • Min Liu
  • Qing-Xian Ma
  • Jian-Bin Luo
چکیده

20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft forging due to its strength, toughness, and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under a high temperature were not studied. For this article, hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01 s-1-1 s-1 were conducted using a Gleeble-1500D thermo-mechanical simulator. Flow stress-strain curves and microstructure after hot compression were obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relationship and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 solid steel ingot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hot Deformation Behavior of 17-7 PH Stainless Steel

To investigate the hot deformation behavior of 17-7 PH stainless steel, hot compression tests were carried out at the temperatures of 950, 1050 and 1150 oC and strain rates of 0.001 s-1 to 0.1 s-1. Accordingly, the hot working behavior was studied by the analyses of flow stress curves, work hardening rate versus stress curves, exponent- type constitutive equations and deformed microstructures. ...

متن کامل

EVALUATING HOT DEFORMATION BEHAVIOR OF W360 TOOL STEEL BY HOT COMPRESSION TEST

In this research, the hot deformation behavior of W360 tool steel was investigated using hot compression test at 1000-1200°C and strain rates of 0.001, 0.01, 0.1, and 1 s-1. According to the results, dynamic recrystallization was found the most important restoration factor of this alloy during hot deformation. Recrystallization was enhanced with an increase in temperature and strain rate. Also,...

متن کامل

Microstructural Evolution of X45CrNiW189 Valve Steel During Hot Deformation

The hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000– 1200 °C and the strain rate range of 0.004 – 0.5 s-1 in order to study the high temperature softening behavior of this steel. For the exact prediction of flow stress, the effective stress-effective strain curves were obtained from experiments under various conditions. On the basis of experi...

متن کامل

Influence of Initial Microstructure on Hot Deformation Behavior of Duplex Stainless Steels

In this research the effect of initial microstructure on hot deformation behavior in terms of Ferrite-to-Austenite ratios is studied. Two types of stainless steels C1 and C2 were homogenizing heat-treated and deformed under hot compression examinations at temperatures 900ºC and 1100ºC at strain rate of 0.1s-1. The results showed that the flow stress levels of specimens are strongly r...

متن کامل

A SVM model to predict the hot deformation flow curves of AZ91 magnesium alloy

Abstract In this work, a support vector machine (SVM) model was developed to predict the hot deformation flow curves of AZ91 magnesium alloy. The experimental stress-strain curves, obtained from hot compression testing at different deformation conditions, were sampled. Consequently, a data base with the input variables of the deformation temperature, strain rate and strain and the output variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018